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Abstract
A simple classical probabilistic system (a simple card game) classically
exemplifies Aharonov and Vaidman’s ‘three-box ‘paradox’’ (1991 J. Phys. A:
Math. Gen. 24 2315), implying that the three-box example is neither quantal
nor a paradox and leaving one with less difficulty to busy the interpreters of
quantum mechanics. An ambiguity in the usual expression of the retrodiction
formula is shown to have misled Albert et al (1985 Phys. Rev. Lett. 54 5)
to a result not, in fact, ‘curious’; the discussion illustrates how to avoid this
ambiguity.

PACS numbers: 03.65.Bz, 01.70.+w

1. Introduction

Aharonov and Vaidman (1991; henceforth ‘AV’) introduced what has come to be called the
‘three-box paradox,’ a postselected process in which each of two disjoint events occurs with
certainty. They express this example in terms of a particle and three boxes; the process starts
with the particle in a state smeared over all three boxes and is postselected to end with the
particle in another, similarly smeared, state. These terminal states are chosen so that, if the
first of the boxes is opened during the process, the particle is certain to be found there, while
if the second box is opened, the particle is found there: a single particle is certain to be found
in each of two boxes! Vaidman (1996) sums this up with

The elements of reality for pre- and postselected quantum systems have unusual and
counterintuitive properties. But, may be this is not because of the illness of their
definition, but due to bizarre feature of quantum systems which goes against the
intuition built during thousands of years, when the results of quantum experiments
were not known.

But this, I think, is much ado about nothing. I will present an example of this behaviour in a
classical-probability setting. (The example is in terms of playing cards, rather than particles
in boxes; the paradoxical result will be that the card drawn must at one and the same time be a
diamond and a spade.) Because the setting of this system is so ordinary, we cannot be tempted
to dismiss its behaviour as another ‘bizarre feature of quantum mechanics’—instead, we are
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led to look for the misapprehension which has led us astray. We certainly will not accede to the
proposed identification of ‘elements of reality’ with ‘certainty of occurrence’—the elements
of reality of this classical system are quite visible and identifiable, not easily conflated with
ghosts.

In section 2, I present AV’s three-box example, restate it in terms of the physically less
obscure triple-slit atomic Young device and analyse it in classical-probability terms. In
section 3, I present a classical system (a deck of cards) with probabilistic properties which
allow the construction of a classical three-box system.

Finally, in section 4, I describe how an ambiguity in the presentation by Aharonov,
Bergmann and Lebowitz (1964; henceforth ‘ABL’) of the retrodiction formula misled Albert
et al (1985) to a result they thought ‘curious’ (which, in turn, misled AV to the three-box
example).

2. The three-box system and its ‘paradox’

The ‘three-box paradox’ of AV consists of a single particle and three boxes; the value pj

of the observable P denotes the presence of the particle in the corresponding box j . The
system is prepared in a certain state s at the time t0, and only those occurrences for which
the system is detected, at time t1, to be in a particular state q are considered. At an intermediate
time t ∈ (t0, t1) we may look for the particle by opening a box. AV showed that, with

|s〉 = (|p1〉 + |p2〉 + |p3〉)/
√

3 and |q〉 = (|p1〉 + |p2〉 − |p3〉)/
√

3 (1)

if we open box 1, we (always) find the particle in it; however, they showed, it is also true that if
we instead open box 2, we (always) find the particle in it: the retrodictive observation of p1 is
certain, and the retrodictive observation of p2 is certain—the three-box ‘paradox.’

2.1. Three-slit Young implementation of the three-box system

The reader may find the physical significance of the initial and final states of the three-box
system rather obscure, expressed in terms of particles in boxes. These states, as well as the
entire system, are much more easily understood expressed as a three-slit atomic diffraction
system. Expressing the three-box system in this form emphasizes that its paradoxical behaviour
is as ordinary (to the extent that any atomic Young system may be considered ‘ordinary’!) as
a double-slit interference apparatus.

Three slits are equally spaced with a separation a. The top and bottom slits are labelled
1 and 2, and the middle slit, 3. A detector D is placed on-axis, at a distance L from slit 3
so that

√
L2 + a2 − L = λ/2 (with λ the wavelength). A detector d is placed at slit 1 or

slit 2 (for atoms, a micromaser; for photons, a quarter-wave plate, the photon source linearly
polarized). This system’s initial and final states are described by (1), and it behaves exactly
as the three-box example. If d is placed at slit 1, every detection at D is in coincidence with
a detection at d (implying passage through slit 1); if d is placed at slit 2, every detection at
D is in coincidence with a detection at d (implying passage through slit 2). This behaviour
is easily understood: placing a detector at slit 1 creates the disjunction ‘either the particle
passed through slit 1 or it passed through the double-slit apparatus comprising slits 2 and 3’;
but passage through the double-slit destructively interferes at the detector D, so the second
term of the disjunction must be false, forcing the first to be true. This apparatus is symmetric
under exchange of slits 1 and 2—hence the ‘paradox.’

The three slits correspond to the three boxes; a detector at slit 1 (only) corresponds to the
opening of box 1 (only). The ‘paradox’ of the three-box system reduces to the phenomenon
(paradox?) of destructive interference in a two-slit Young apparatus, nothing more.
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2.2. Classical-probability derivation of the three-box retrodiction formula

Let us now derive the expression for the retrodictive probability applicable to the three-box
example. We carry out the derivation in classical-probability terms to avoid being misled by
any quantum ‘bizarreness.’ (See appendix A for notational matters.)

The observation of the contents of a single box is a partial observation: the opening of box
1, for example, determines ‘p1 ∨ p∼

1 ,’ where p1 denotes ‘particle in box 1’ and p∼
1 denotes

‘particle not in box 1.’ Note that p∼
1 is not the same as p2 ∨ p3; p∼

1 does not signify the
ignorance of ‘either p2 or p3, but we do not know which,’ but rather signifies the lack of a fact
of the matter regarding these two possibilities1. The condition of such a partial observation is
the partial manifestation

M∼
Pj

≡ pj ∨ p∼
j (2)

of ‘in box j ’ and ‘not in box j ,’ exactly one is true.
Accounting for this manifestation, and carefully labelling each event’s position in the

sequence with a bracketed superscript ordinal (see appendix A), the expression for the
retrodictive probability of finding the particle when box j is opened is

Prs[0]

(
p

[1]
j

∣∣ M∼
Pj

[1] ∧ q
[2]
k

) =
Prs[0]

(
p

[1]
j ∧ q

[2]
k

∣∣ M∼
Pj

[1]
)

Prs[0]

(
q

[2]
k

∣∣M∼
Pj

[1]
) (3)

where we have used (A.1). (Note that, were the manifestation not expressed explicitly, the
denominator would be ambiguous as to the identity or nature of event[1]).

Because the condition pj ∧ M∼
Pj

= pj , the numerator is

Prs[0]

(
p

[1]
j ∧ q

[2]
k

∣∣M∼
Pj

[1]) = Prs[0]

(
q

[2]
k

∣∣ p[1]
j

)
Prs[0]

(
p

[1]
j

)
. (4)

Further, the condition M∼
Pj

∧ (pj ∨ p∼
j ) = M∼

Pj
; thus the denominator may be written as

Prs[0]

(
q

[2]
k

∣∣ M∼
Pj

[1]) =
Prs[0]

(
(pj ∨ p∼

j )[1] ∧ q
[2]
k

∣∣ M∼
Pj

[1]
)

Prs[0]

(
(pj ∨ p∼

j )[1]
)

= Prs[0]

(
p

[1]
j ∧ q

[2]
k

∣∣ M∼
Pj

[1]) + Prs[0]

(
p∼

j
[1] ∧ q

[2]
k

∣∣ M∼
Pj

[1])
= Prs(qk | pj) Prs(pj ) + Prs(qk | p∼

j ) Prs (P
∼
j )

(5)

where we have used equation (4) as well as the disjointness and completeness of {pj , p
∼
j }.

Thus the retrodictive probability equation, (3), may be written as

Prs[0]

(
p

[1]
j

∣∣ M∼
Pj

[1] ∧ q [2]
) = Prs (q | pj) Prs(pj )

Prs(q | pj ) Prs (pj ) + Prs(q | p∼
j ) Prs(p∼

j )
. (6)

2.3. The three-box paradox

If the second term of the denominator of (6) were to vanish, the probability would be 1; if
there is a choice of s and q such that the term were to vanish for more than one value of j (e.g.
for both M∼

P1
and M∼

P2
), we would obtain a three-box ‘paradox.’ In the succeeding section we

will present a classical system which exhibits exactly this behaviour.

1 Aristotle gave this example: if P is the proposition ‘Tomorrow there will be a sea battle,’ then P ∨P ∼ is true, but
neither P nor P ∼ has a truth value today—there is no fact of the matter regarding either.
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The three-box result requires partial manifestation; if, instead, we make a complete
observation MP = p1 ∨ p2 ∨ p3 (e.g., by looking into at least two boxes), then the
manifestation is complete,

Prs[0]

(
p

[1]
j

∣∣ M [1]
P ∧ q

[2]
k

) = Prs(qk | pj) Prs(pj )∑3
t=1 Prs(qk | pt) Prs(pj )

. (7)

From this it is clear that Prs[0]

(
p

[1]
j

∣∣M [1]
P ∧ q [2]

) = 1 is not possible for more than one j , no
matter the choice of s and q.

2.4. The quantal three-box paradox

If the particle is first placed in box 1 and then box 2 is opened (of course it is not there), it
should be that if box 3 were next opened, the particle would not be there, but if, instead, box 1
were next opened, the particle would be found. This is the requirement of stability, (B.1): the
act of looking in box 2 must not move the particle out of box 1. Thus (B.4) applies to M∼

Pj
;

applying equations (B.2) and (B.4) to (6), we obtain the latter in its quantum mechanical form

Prs[0]

(
p

[1]
j

∣∣ M∼
Pj

[1] ∧ q [2]) = |〈q | pj 〉|2|〈pj | s〉|2
|〈q | pj 〉|2|〈pj | s〉|2 +

∣∣∑
t 	=j 〈q | pt 〉〈pt | s〉∣∣2 . (8)

(This is a specialization of ABL’s (2.4) and (2.5),which, on p 1413, they extended to incomplete
measurements. AV treat it as a new result, their (5).)

If |s〉 and |q〉 are such that

〈q | p1〉〈p1 | s〉 = 〈q | p2〉〈p2 | s〉 = −〈q | p3〉〈p3 | s〉 (9)

(such as equation (1), for example), then the retrodictive observation of p1 is certain, and the
retrodictive observation of p2 is certain—the three-box ‘paradox.’

2.5. The quantal retrodiction (ABL) formula

Using Prs(y | x) = Prx(y) = |〈y | x〉|2 to express (7) in quantum mechanical terms, we obtain
the retrodiction formula for a single complete intermediate observation

Prs[0]

(
p

[1]
j

∣∣ M [1]
P ∧ q

[2]
k

) = |〈qk | pj 〉|2|〈pj | s〉|2∑
t |〈qk | pt〉|2|〈pt | s〉|2 . (10)

(This is the result ABL stated in their (2.4) and (2.5), specialized to a single intermediate
complete observation.)

3. A classical system with pseudo-quantal properties

I present here a strictly non-quantal system which has many statistical properties similar to
quantum mechanics, and which, in particular, allows the construction of a three-box ‘paradox.’
(I discuss in greater depth the use of such classical-probability systems in Kirkpatrick (2003).)
Constructed using ordinary playing cards, this system is as distinct from quantum mechanics
as is possible. Each card carries two marks, the ‘face’ and the ‘suit’ (traditionally with names
such as King, Queen, Jack, 10, . . . and spades, hearts, diamonds, clubs, respectively); these
marks will be treated as system variables, Face (with values K, Q, J) and Suit (with values
S, D, H). I will refer to these variables generically as P and Q: P,Q ∈ {Face, Suit}, P 	= Q,
with values {pj } and {qk}, respectively.
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3.1. The classical system

The system is a deck of playing cards, each card marked with a Face value and a Suit value,
and a memory containing the name (not the value) of the variable of the preceding observation;
the content of the memory is denoted M. The deck is divided into two parts, which we call
Active and Passive.

To prepare the system in the state P = pj :

(i) Place all cards with P = pj in Active and the remainder of the deck in Passive.
(11a)(ii) Set the memory to the variable name: M ← P .

To observe the variable P:
If M = P (i.e. the observation of P is being repeated)

(i) Select a card at random from Active.
(ii) Report pj the value of the variable P of this card.

else (M 	= P—the preceding observation was not of P) (11b)

(i) Select a card at random from Passive.
(ii) Report pj , the value of the variable P of this card.

(iii) Prepare the system in the state P = pj (as (11a)).

The variables each take on the same number of values, V . Duplicate cards are allowed
under the restriction that each value of each variable appears N times in the deck (so their a
priori probabilities are equal). For example, we might use the deck {(2)KS, KH, QS, QH} (the
‘(2)’ indicates two KS cards): V = 2 and N = 3.

3.2. The incomplete observation

In order to create a classical three-box-type system, we must make a partial, or incomplete,
observation. Fortunately, the partial observation M∼

Pj
= pj ∨ p∼

j is easily implemented in
our example system: to prepare the system in the state p∼

j , we simply follow the instructions
literally, placing every card with P-value p∼

j (i.e., every card which satisfies P 	= pj ) in Active,
and all the others (all of which satisfy P = pj ) in Passive. The observation of P under the
manifestation rule M∼

Pj
is accomplished exactly as before: we report ‘pj ’ if the card’s value

of P is pj , and ‘p∼
j ’ if the card’s value of P is not pj ; for the purpose of the test ‘M = P ,’ a

variable is considered the same variable whether partially or fully observed.
Note from (B.1) that M∼

Pj
is stable (as we required of the quantal manifestation). Formulae

for this system’s probabilities are given in appendix C.

3.3. The classical three-box ‘paradoxical’ system

We can now create a classical ‘three-box paradox’ example: take the deck to be
{(2)KH, QS, QD, JD, JS}(V = 3, N = 2). We will prepare the system in the state Face = Q,
and filter to (accept only those processes which end in) the final state Face = K. Let
Suit = S correspond to box 1, and Suit = D correspond to box 2; thus ‘opening box 1 (only)’
corresponds to the manifestation M∼

S = S ∨ S∼ (‘is the card a S or not’), and ‘opening box 1
(only)’ corresponds to the manifestation M∼

D = D ∨ D∼ (‘is the card a D or not’). This leads
to an exact analogue to the three-box example, but in terms of a deck of cards.

Let us express the deck in the notation [Active, |Passive]; then preparation of the state
Q leaves the deck as [QS, QD | (2)KH, JD, JS]. The partial manifestation M∼

S then leads,
with probability 1/4, to the occurrence of S, [QS, JS | (2)KH, QD, JD], and, with probability
3/4, to the occurrence of S∼, [(2)KH, QD, JD | QS, JS]. Clearly PrQ(K | S∼) = 0, so, by (6),
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PrQ[0]

(
S[1]

∣∣ M∼
S

[1] ∧ K[2]
) = 1, and the card is certain to be a S. A parallel analysis of the

partial manifestation M∼
D leads to PrQ[0]

(
D[1]

∣∣ M∼
D

[1] ∧ K[2]
) = 1, so the card is certain to be a

D. Thus, in this postselected process, at the intermediate point the card is both S and D, each
with certainty—the ‘three-box paradox.’

3.4. Classical interference shown by p∼
j

The ‘paradox’ arises because both PrQ(K | S∼) and PrQ(K | D∼) vanish. The vanishing of these
terms is not trivial: for example, S∼ would seem to include D, but PrQ(K | D∼) 	= 0.

The manifestation MSuit = S ∨ H ∨ D leads to S (as before), with a probability of 1/4, to
H, [(2)KH | QS, QD, JS, JD], with probability 1/2, and to D, [QD, JD | (2)KH, QS, JS], with
probability 1/4. In this case ‘not S’ is ‘H ∨ D,’ the mixture {(H, 2/3), (D, 1/3)}; this is
easily seen to be [(4)KH, QD, JD | (2)KH, (3)QS, (2)QD, (3)JS, (2)JD] (with probability 3/4).
Clearly, the mixture corresponding to H ∨ D differs from the pure state S∼.

It seems to be generally assumed that in classical probability there could be no difference
between p∼

1 and p2 ∨ p3 ∨ · · ·; on the other hand, such a difference is known to occur
in quantum mechanics, where it is called ‘interference,’ and is generally discussed as a
mystery specific to quantum mechanics. However, the example presented here demonstrates
interference in a classical system: the rules (11a) and (11b) show us that, for every state
s, Prs (S∼) = Prs(H ∨ D), suggesting that S∼ = H ∨ D; however (for the deck of this example)
PrQ(K | S∼) = 0 	= PrQ(K | H ∨ D), so S∼ 	= H ∨ D. Because quantum interference exhibits
exactly this probability behaviour, by analogy we say that H and D interfere.

If two or three of the ‘boxes’ are examined (i.e. the complete observation S ∨ H ∨ D is
made), so the results are governed by the probabilities PrQ[0]

(
pj

∣∣ MP
[1] ∧ K[2]

)
, then no pj

has a retrodicted probability of 1. The ‘three-box paradox’ is an interference effect and that
interference is destroyed by the facts-of-the-matter established by examining any two of the
boxes—in the original quantal three-box setting, in the three-slit interference form (whether
atoms or classical waves) and in the classical card game.

4. Not-so-curious statistics

The three-box example grew out of the ‘curious’ example of Albert, Aharonov and D’ Amato
(1985) (henceforth ‘AAD’); in that work, a pre- and postselected system is introduced with
a contextual behaviour which, the authors claim, contradicts the theorems of Gleason and
Kochen and Specker.

This conclusion is unwarranted; it arises out of ambiguity regarding the nature, complete
or partial, of the intermediate manifestation.

AAD’s system has an observable X with eigenstates {|xj 〉} an observable A with
an eigenstate |a〉 = (|x1〉 + |x2〉)/

√
2 and an observable B with an eigenstate |b〉 =

(|x2〉 + |x3〉)/
√

2. The process is preselected at the time t0 for A = a and postselected
at t2 for B = b. According to the ABL retrodiction formula, an observation of X at t1 ∈ (t0, t2)

yields X = x2 with certainty; thus Pr(X = x1) = Pr(X = x3) = 0 at t1. (Hence, the authors
claim, A = a, B = b and X = x2 are ‘simultaneously well defined’ throughout the interval
(t0, t2), though they are all pairwise incompatible.) A fourth variable, Q, is introduced, with
eigenstates

|q1〉 = α|x1〉 + β|x3〉 |q2〉 = |x2〉 |q3〉 = β∗|x1〉 − α∗|x3〉. (12)
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Now, according to AAD,

something very curious arises. Suppose that Q is observed within the interval (t0, t2).
It might be expected, since X = x2 within that interval, and since |q2〉 = |x2〉, that
such an observation will find, with certainty, that Q = q2. But that is not so. . .

Well, whether that is so or not depends entirely on how Q and X are to be observed.
These are different variables, but they share an eigenstate (|x2〉 = |q2〉); because x2 = q2, also
x∼

2 = q∼
2 . Thus one would expect that observing M∼

Q2
≡ q2 ∨ q∼

2 would yield the same result
for q2 as observing M∼

X2
≡ x2 ∨ x∼

2 would yield for x2. And this is exactly right: applying (8)
to this situation,

Pra[0]

(
x

[1]
2

∣∣ M∼
X2

[1] ∧ b[2]
) = 1 = Pra[0]

(
q

[1]
2

∣∣M∼
Q2

[1] ∧ b[2]
)
. (13)

On the other hand, q1 ∨ q3 is physically different from x1 ∨ x3, so the result for q2 when
observing MQ ≡ q1 ∨ q2 ∨ q3 may well differ from the result for x2 when observing
MX ≡ x1 ∨ x2 ∨ x3. Again, this is the case; applying (10), we find

Pra[0]

(
x

[1]
2

∣∣ M [1]
X ∧ b[2]

) = 1 but Pra[0]

(
q

[1]
2

∣∣ M [1]
Q ∧ b[2]

)
< 1. (14)

AAD inappropriately used the complete observation MQ rather than the partial observation
M∼

Q2
; this led them to (14) rather than to (13), and hence to an unwarranted sense of

‘curiousness’: AAD continue

But that is not so: Albeit 〈a | x3〉 = 〈b | x1〉 = 0, yet 〈a | q1〉 	= 0 and 〈b | q1〉 	= 0.
Consequently, albeit Pr(x1) = 0 and Pr(x3) = 0 within that interval, Pr(q1) 	= 0
there.

An ambiguity in the ABL expression for the retrodiction probability led AAD to this
confusion: what we have expressed as Prs[0]

(
p

[1]
j

∣∣M [1]
P ∧ q

[2]
k

)
, ABL denoted p(pj/s, qk)

(and AAD denoted merely P(pj )), leaving out any mention of the details of the manifestation
at the intermediate observation. But, as we have just seen, it is necessary to take into
account the degree of completeness of the manifestation, even of those values not under direct
consideration.

The obvious lesson: use a complete, unambiguous notation which cannot fail to call
attention to this need.

5. The values of a pair of incompatible variables in the interval between their
observations

ABL suggested that, if a system were prepared in the state P = pj at time t1 and observed at
time t2 > t1 in the state Q = qk, then both P and Q are sharp at all times t ∈ (t1, t2), so ‘we
are led into assigning the state [|qk〉] to the period of time preceding the observation of [Q]
yielding the eigenvalue [qk].’ This is based on the fact that, according to (7), an observation
of P at any such time t would yield, with certainty, the value pj , but also an observation of
Q at any such time t would yield, with certainty, the value qk. (Of course, (7) allows for
only one such observation within that time interval.) A considerable controversy has arisen
(cf Vaidman (1999), Kastner (1999) and citations within each) regarding exactly what such
‘counterfactual’ sharpness might mean.

It is interesting to examine this claim within our card system. Prepare the system in the
state K at time t1, and at time t2 > t1 observe Suit and select the occurrence if and only if
Suit = H. Then, exactly in the sense of ABL, both K and H are sharp throughout the interval
(t1, t2). But we can see inside this system: if during (t1, t2) either no observation, or an
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observation of Face, is made, then Face = K throughout but Suit has no value until t2; on
the other hand, if at time t ∈ (t1, t2) an observation of Suit is made, then during the interval
(t1, t) K is sharp and Suit has no value, and during the interval (t, t2) H is sharp and Face has
no value. That the observation of Suit has the definite result of H implies nothing about its
prior-to-observation value; the final selection simply throws away all occurrences of D and S.
There is no warrant for the claim that these variables have simultaneously sharp values.

Note also how inappropriate it is to apply the term ‘measurement’ to these procedures:
clearly, no value of Q exists at time t1 to be measured; even the term ‘observation’ is misleading.
In fact, an interaction of a specific nature has occurred which has brought to the variable Q a
value; it is this that I have called ‘manifestation’. It is interesting to read the Vaidman–Kastner
discussion (as well as the much older and more extensive literature concerning quantum
‘reality’) with this example in mind.

6. Conclusion

The three-box example arose in a quantum setting, and was taken (somewhat uncritically) to
be another example of the ‘bizarre’ nature of quantum mechanics. The restatement of the
example as a three-slit atomic Young system shows it to be a straightforward example of
quantal interference. But exemplified in a perfectly ordinary setting, a deck of cards without
a quantum in sight, the three-box phenomenon becomes merely an interesting phenomenon
of ordinary probability systems, exhibited by a quantum mechanical system qua probability
system, in no way a quantal phenomenon—hence my characterization of Vaidman’s comment
as ‘much ado about nothing’.

Quantum mechanics provides only the probability of events; it is generally agreed that
there is no underlying mechanism (and certainly, if there is, we know nothing of it). Thus all
we know of the quantum three box example is this: a system is prepared in a certain way; one
or another of two partial observations of a system variable is made; a final observation is used
to filter out a single outcome; under a certain choice of the preparation and the final filter, each
of the intermediate observations has a sharp outcome. Quantum mechanics tells us nothing
more. This card game satisfies the same probabilistic description; every probabilistic quality
is common to both systems, and the quantitative differences in probabilities fail to provide a
qualitative distinguishing feature.

Their significant difference between them is that the card system has a known underlying
mechanism which can be analysed and understood. First, such analysis shows no ad hoc
devices—the card system follows its own internal logic consistently to the three-box-like
result. Second, analysis of the interior state of this classical system makes it clear that
there is no ontic significance to these retrodictively sharp-if-and-when-observed values—the
‘observation’ actually brings the value into existence. Thus, the mere fact that a value is
statistically definite does not imply that the observable ‘has’ that value (in any reasonable
sense of ‘to have’): a sharp value is not necessarily a possessed value. This ‘failure of
realism’ in an obviously real system undercuts metaphysical concerns regarding such failure
in quantum mechanics and supports the conclusion that the three-box example has no ontic
significance regarding possessed values.

Appendix A. Notation

Throughout this paper, P and Q represent distinct system variables with possible values {pj }
and {qk}, respectively. The proposition that a variable has a certain value, e.g., ‘P = pj ’,
is abbreviated with the variable’s value, ‘pj ’. A general preparation of the system will be
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denoted s; we write probability expressions with the preparation as a subscript: Prs(pj ) is the
probability of the proposition P = pj after the preparation in the state s.

The conditional probability (probability conditioned on an occurrent fact), defined by2

Prs(b | a) =
{

Prs(a ∧ b)/Pr(a) Pr(a) > 0
undefined otherwise

(A.1)

is the probability of the truth of the proposition b given that the fact stated by the proposition
a occurs.

The set of propositions {aj } is disjoint iff, whenever all {aj } take on values, aj ∧ aj ′ =
F, j 	= j ′. A disjoint set satisfies

∑
tPrs(at ) = Prs

(∨
t at

)
for all preparations s.

The set {aj } is complete iff, whenever all {aj } take on values,
∨

t at = T; hence, a disjoint,
complete set satisfies

∑
t Prs (at ) = 1 for all preparations s.

An event is an occurrence at which at least one variable of the system takes on a value
randomly; this is brought about by a physical interaction of the system with its exterior.
Which variable takes on a value randomly depends on the details of the physical interaction,
or manifestation; at each event, then, a particular variable is manifested. Manifestation will
be indicated as a condition of the probability (as discussed in section 2.2).

The ordinal position of an event in a sequence of events will be denoted by a superscript in
brackets: the event E followed by the event F is denoted E[1] ∧F [2]. However, when the terms
in the probability expressions are in the ‘natural’ order and no ambiguity arises, the sequence
ordinals will be dropped; thus Prs(E) always means Prs[0](E[1]), and Prs(F | E) always means
Prs[0](F [2] | E[1]).

Appendix B. Stability

In quantum mechanics a proposition p is represented by the projector P[p]. If the manifestation
M∼

Pk
is stable3 in the sense that

Prp[0]
j

(
p∼

k
[1] ∧ p

[2]
j ′

∣∣ M∼
Pk

[1]) = δjj ′(1 − δjk) (B.1)

then, applying the Wigner ‘sandwich’ formula for the probability of successive non-disjunctive
events,

Prs(p[1] ∧ q [2]) = Tr{ρρρ[s]P[p]P[q]P[p]} (B.2)

we obtain

|〈pj |P[p∼
k ]|pj ′ 〉|2 = δjj ′(1 − δjk). (B.3)

In order that P[p∼
k ] be a projector, the diagonal elements of its matrix must be the positive

square roots, hence

P[p∼
k ] =

∑
t 	=k

P[pt ] = 1 − P[pk]. (B.4)

Appendix C. Probabilities of the card system

The example of section 3 satisfies the following probability expressions:

Prs(· | pj) = Prpj
(·) if Prs (pj ) 	= 0

Prqj
(· | p∼

k ) = Prp∼
k
(·) if Prqj

(p∼
k ) 	= 0

Prpj
(· | p∼

k ) = Prpj
(·) if j 	= k

(C.1)

2 Disjunction (‘or’) is indicated by ∨; conjunction (‘and’), by ∧; negation (‘not’) by ∼.
3 Stability is implied by, but weaker than, Wigner’s ‘morality’ (cf Goldberger and Watson 1964).
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Prpj
(pk) = δjk Prpj

(qk) = N−N(pj · qk)

N(V−1)

Prp∼
k
(pj ) = (1 − δjk)

1
V −1 Prp∼

j
(qk) = N(pj · qk)

N

(C.2)

Prs(p∼
j ) = 1 − Prs(pj ). (C.3)
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